精英家教网 > 初中数学 > 题目详情
已知△OAB各顶点的坐标分别为O(0,0),A(2,4),B(4,0),若得到与△OAB形状相同的大△OA′B′,已知A′点的坐标为(6,12),那么B′点的坐标为(  )
A.(4,O)B.(2,O)C.(16,O)D.(12,0)
相关习题

科目:初中数学 来源: 题型:

已知△OAB各顶点的坐标分别为O(0,0),A(2,4),B(4,0),若得到与△OAB形状相同的大△OA′B′,已知A′点的坐标为(6,12),那么B′点的坐标为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△OAB各顶点的坐标分别为O(0,0),A(2,4),B(4,0),若得到与△OAB形状相同的大△OA′B′,已知A′点的坐标为(6,12),那么B′点的坐标为(  )
A.(4,O)B.(2,O)C.(16,O)D.(12,0)

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知△OAB各顶点的坐标分别为O(0,0),A(2,4),B(4,0),若得到与△OAB形状相同的大△OA′B′,已知A′点的坐标为(6,12),那么B′点的坐标为


  1. A.
    (4,O)
  2. B.
    (2,O)
  3. C.
    (16,O)
  4. D.
    (12,0)

查看答案和解析>>

科目:初中数学 来源:山东省同步题 题型:单选题

△OAB各顶点的坐标分别为O(0,0)、A(2,4)、B(4,0),今想得到与△OAB 形状相同的一个大△OA′B′,已知A′(4,8),则B′的坐标为
[     ]
A.(2,0)
B.(4,0)
C.(16,0)
D.(8,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线数学公式分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省中考数学预测试卷(八)(解析版) 题型:解答题

如图,已知直线分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省南通市中考数学二模试卷(解析版) 题型:解答题

如图,已知直线分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通二模)如图,已知直线y=
12
x+2
分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ的面积相等,且等于t,求t的取值范围.

查看答案和解析>>


同步练习册答案