精英家教网 > 初中数学 > 题目详情
若a⊥b,c⊥d,则a与c的关系是(  )
A.平行B.垂直C.相交D.以上都不对
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二精英家教网次方程x2-7x+12=0的两个根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E为x轴上的点,且S△AOE=
16
3
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求数学公式的值.
(2)若E为x轴上的点,且S△AOE=数学公式,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年北京市清华附中九年级(上)统练数学试卷(1)(解析版) 题型:解答题

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求的值.
(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年山东省济南市历下区中考数学二模试卷(解析版) 题型:解答题

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求的值.
(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年黑龙江省哈尔滨市铁路学校中考数学模拟试卷(一)(解析版) 题型:解答题

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求的值.
(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,在平行四边形ABCD中,E,F分别是边BC和AD上的点且BE=DF.
①线段AE与线段CF有怎样的数量关系和位置关系?并证明你的结论.
②若AE⊥BC,则四边形AECF是下列选项中的(  )
A、梯形了;B、菱形;C、正方形;D、矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以⊙O的半径OA为直径作⊙O1,⊙O的弦AD交⊙O1于C,则:
(1)OC与AD的位置关系是
垂直
垂直

(2)OC与BD的位置关系是
平行
平行

(3)若OC=2cm,则BD=
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、A,B两地的距离是160km,若汽车以平均每小时80km的速度从A地开往B地,则汽车距B地的路程y(km)与行驶的时间x(h)之间的函数关系式为y=
160-80x

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AC是平行四边形ABCD的对角线.
(1)请按如下步骤在图中完成作图(保留作图痕迹):
①分别以A,C为圆心,以大于
12
AC
长为半径画弧,弧在AC两侧的交点分别为P,Q;
②连接PQ,PQ分别与AB,AC,CD交于点E,O,F.
③则直线PQ与AC的位置关系是
 

(2)若AB=6,BC=4,求△ADF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城)在平面直角坐标系xOy中,已知二次函数y=
1
4
x2+mx+n
的图象经过点A(2,0)和点B(1,-
3
4
),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.

(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=-
3
4
+2t.现以线段OP为直径作⊙C.
①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.
②若在点P开始运动的同时,直线l也向上平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=-1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.

查看答案和解析>>


同步练习册答案