精英家教网 > 初中数学 > 题目详情
“x的
1
2
与y的和”用代数式可以表示为(  )
A.
1
2
(x+y)
B.x+
1
2
+y
C.x+
1
2
y
D.
1
2
x+y
相关习题

科目:初中数学 来源: 题型:

用代数式表示:“x的5倍与y的和的一半”可以表示为(  )
A、5x+
1
2
y
B、
1
2
(5x+y)
C、(5x+y)
1
2
D、5x+y

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用代数式表示:“x的5倍与y的和的一半”可以表示为(  )
A.5x+
1
2
y
B.
1
2
(5x+y)
C.(5x+y)
1
2
D.5x+y

查看答案和解析>>

科目:初中数学 来源: 题型:

“x的
1
2
与y的和”用代数式可以表示为(  )
A、
1
2
(x+y)
B、x+
1
2
+y
C、x+
1
2
y
D、
1
2
x+y

查看答案和解析>>

科目:初中数学 来源:杭州 题型:单选题

“x的
1
2
与y的和”用代数式可以表示为(  )
A.
1
2
(x+y)
B.x+
1
2
+y
C.x+
1
2
y
D.
1
2
x+y

查看答案和解析>>

科目:初中数学 来源: 题型:

“x与y的和的
1
2
”用代数式可以表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

25、我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;   5、12、13;  7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
正确
.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;   6、8、10;   8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算数学公式(9-1)、数学公式(9+1)与数学公式(25-1)、数学公式(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2012年四川省内江市市中区中考数学模拟试卷(解析版) 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源: 题型:

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算
1
2
(9-1)、
1
2
(9+1)与
1
2
(25-1)、
1
2
(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:三明 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算
1
2
(9-1)、
1
2
(9+1)与
1
2
(25-1)、
1
2
(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>


同步练习册答案