精英家教网 > 初中数学 > 题目详情
下列图形中,∠1、∠2是对顶角的是(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
相关习题

科目:初中数学 来源:不详 题型:单选题

下列图形中,∠1、∠2是对顶角的是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

1.如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;

2.如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;

3.如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

【小题1】如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;
【小题2】如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
【小题3】如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

查看答案和解析>>

科目:初中数学 来源:2012年江苏省南京市溧水县中考二模数学试卷(带解析) 题型:解答题

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

【小题1】如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;
【小题2】如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
【小题3】如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

查看答案和解析>>

科目:初中数学 来源:2012年江苏省南京市溧水县中考二模数学试卷(解析版) 题型:解答题

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

1.如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;

2.如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;

3.如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(-1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:
(1)AC的长等于______;
(2)画出△ABC向右平移2个单位得到的△A1B1C1,则A点的对应点A1的坐标是______;
(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△A2B2C2,则A点对应点A2的坐标是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

 


(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;

(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;

(3)如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是

                                                         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

小题1:如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;
小题2:如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
小题3:如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

查看答案和解析>>

科目:初中数学 来源:2013届北京市燕山区九年级上学期期末考试数学试卷(带解析) 题型:解答题

如图,在边长为1的小正方形组成的网格中,△AOB的顶点都在格点上,点A、B的坐标分别为(-4,4)、(-6,2).请按要求完成下列各题:

⑴ 把△AOB向上平移4个单位后得到对应的△A1OB1,则点A1、B1的坐标分别是             
⑵ 将△AOB绕点O顺时针旋转90°,画出旋转后的△A2OB2,在旋转过程中线段AO所扫过的面积为              
⑶ 点P1,P2,P3,P4,P5是△AOB边上的5个格点,画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△AOB相似.(要求:在图中联结相应线段,不用说明理由)

查看答案和解析>>

科目:初中数学 来源:2012-2013学年北京市燕山区九年级上学期期末考试数学试卷(解析版) 题型:解答题

如图,在边长为1的小正方形组成的网格中,△AOB的顶点都在格点上,点A、B的坐标分别为(-4,4)、(-6,2).请按要求完成下列各题:

⑴ 把△AOB向上平移4个单位后得到对应的△A1OB1,则点A1、B1的坐标分别是             

⑵ 将△AOB绕点O顺时针旋转90°,画出旋转后的△A2OB2,在旋转过程中线段AO所扫过的面积为              

⑶ 点P1,P2,P3,P4,P5是△AOB边上的5个格点,画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△AOB相似.(要求:在图中联结相应线段,不用说明理由)

 

查看答案和解析>>


同步练习册答案