精英家教网 > 初中数学 > 题目详情
如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )
A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>AD
魔方格
相关习题

科目:初中数学 来源: 题型:

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )
A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>AD
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是


  1. A.
    AB>AC>AD
  2. B.
    AB>BC>CD
  3. C.
    AC+BC>AB
  4. D.
    AC>CD>AD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=
 

(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=
 

(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=______;
(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=______;
(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab

又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根据上述内容,回答下列问题:在a+b≥2
ab
(a、b均为正实数)中,若ab为定值p,则a+b≥2
p
,当且仅当a、b满足
 
时,a+b有最小值2
p

(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
ab
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=
4
x
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012年浙江省宁波市小曹娥中学自主招生考试数学摸拟试卷(三)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2012年河南省中考数学热身卷(二)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年福建省龙岩市连城一中自主招生考试数学试卷(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市江阴高级中学中考数学二模试卷(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>


同步练习册答案