精英家教网 > 初中数学 > 题目详情
正六边形的一个外角度数是(  )
A.120°B.100°C.90°D.60°
相关习题

科目:初中数学 来源: 题型:

正六边形的一个外角度数是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正六边形的一个外角度数是(  )
A.120°B.100°C.90°D.60°

查看答案和解析>>

科目:初中数学 来源:《24.3 正多边形与圆》2010年同步练习2(解析版) 题型:选择题

以下说法正确的是( )
A.每个内角都是120°的六边形一定是正六边形
B.正n边形有n条对称轴
C.正n边形的每一个外角度数等于它的中心角度数的二倍
D.正多边形一定既是轴对称图形,又是中心对称图形

查看答案和解析>>

科目:初中数学 来源:上海模拟 题型:单选题

以下说法正确的是(  )
A.每个内角都是120°的六边形一定是正六边形
B.正n边形有n条对称轴
C.正n边形的每一个外角度数等于它的中心角度数的二倍
D.正多边形一定既是轴对称图形,又是中心对称图形

查看答案和解析>>

科目:初中数学 来源:2004年上海市民办中学“八校联考”中考数学试卷(解析版) 题型:选择题

(2004•上海模拟)以下说法正确的是( )
A.每个内角都是120°的六边形一定是正六边形
B.正n边形有n条对称轴
C.正n边形的每一个外角度数等于它的中心角度数的二倍
D.正多边形一定既是轴对称图形,又是中心对称图形

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”.
(1)角的“接近度”定义:设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|.于是,|180-m|越小,该正n边形就越接近于圆,
①若n=3,则该正n边形的“接近度”等于
 

②若n=20,则该正n边形的“接近度”等于
 

③当“接近度”等于
 
.  时,正n边形就成了圆.
(2)边的“接近度”定义:设一个正n边形的外接圆的半径为R,正n边形的中心到各边的距离为d,将正n边形的“接近度”定义为|
dR
-1|
.分别计算n=3,n=6时边的“接近度”,并猜测当边的“接近度”等于多少时,正n边形就成了圆?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”.
(1)角的“接近度”定义:设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|.于是,|180-m|越小,该正n边形就越接近于圆,
①若n=3,则该正n边形的“接近度”等于________.
②若n=20,则该正n边形的“接近度”等于________.
③当“接近度”等于________. 时,正n边形就成了圆.
(2)边的“接近度”定义:设一个正n边形的外接圆的半径为R,正n边形的中心到各边的距离为d,将正n边形的“接近度”定义为数学公式.分别计算n=3,n=6时边的“接近度”,并猜测当边的“接近度”等于多少时,正n边形就成了圆?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”。
(1)角的“接近度”定义:设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|.于是,|180-m|越小,该正n边形就越接近于圆,
①若n=3,则该正n边形的“接近度”等于        
②若n=20,则该正n边形的“接近度”等于        

③当“接近度”等于         。  时,正n边形就成了圆.
(2)边的“接近度”定义:设一个正n边形的外接圆的半径为R,正n边形的中心到各边的距离为d,将正n边形的“接近度”定义为.分别计算n=3,n=6时边的“接近度”,并猜测当边的“接近度”等于多少时,正n边形就成了圆?

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(17)(解析版) 题型:解答题

如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”.
(1)角的“接近度”定义:设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|.于是,|180-m|越小,该正n边形就越接近于圆,
①若n=3,则该正n边形的“接近度”等于______.
②若n=20,则该正n边形的“接近度”等于______.
③当“接近度”等于______.  时,正n边形就成了圆.
(2)边的“接近度”定义:设一个正n边形的外接圆的半径为R,正n边形的中心到各边的距离为d,将正n边形的“接近度”定义为.分别计算n=3,n=6时边的“接近度”,并猜测当边的“接近度”等于多少时,正n边形就成了圆?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”、在研究“接近度”时,应保证相似图形的“接近度”相等、
(1)设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|、于是,|180-m|越小,该正n边形就越接近于圆,
①若n=20,则该正n边形的“接近度”等于
 

②当“接近度”等于
 
时,正n边形就成了圆.
(2)设一个正n边形的半径(即正n边形外接圆的半径)为R,边心距(即正n边形的中心到各边的距离)为r,将正n边形的“接近度”定义为|R-r|,于是|R-r|越小,正n边形就越接近于圆;你认为这种说精英家教网法是否合理?若不合理,请给出正n边形“接近度”的一个合理定义.

查看答案和解析>>


同步练习册答案