精英家教网 > 初中数学 > 题目详情
若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在(  )
A.第二、四象限B.第一、三象限
C.平行于x轴的直线上D.平行于y轴的直线上
相关习题

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源:河北省期中题 题型:解答题

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.

(1)已知AC=3,求点B的坐标;               

(2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).                

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.

(1)已知AC=3,求点B的坐标;               

(2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).                

查看答案和解析>>

科目:初中数学 来源:2012届湖南省临武县楚江中学初中毕业学业考试数学试卷(带解析) 题型:解答题

如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.
(1)已知AC=3,求点B的坐标;                 
(2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同
一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).                 
  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.
(1)已知AC=3,求点B的坐标;                 
(2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同
一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).                 
  

查看答案和解析>>

科目:初中数学 来源: 题型:

甲、乙从同一地点出发,甲乘坐电动观光车,乙步行,沿着同一条山路上山游玩,两人相约在电动车终点站会合.设乙出发x分钟后行走的路程为y米,图中的折线表示乙在整个行走过程中y与x的函数关系.甲乘坐的电动观光车平均速度为180米/分.
(1)乙行走的总路程是
1800
1800
米,他在中途休息了
5
5
分钟;
(2)①当25≤x≤35时,求y关于x的函数关系.②若甲在乙出发后20分钟乘车,则乙出发后几分钟甲能追上乙?

查看答案和解析>>

科目:初中数学 来源:福建省期末题 题型:解答题

甲、乙从同一地点出发,甲乘坐电动观光车,乙步行,沿着同一条山路上山游玩,两人相约在电动车终点站会合.设乙出发x分钟后行走的路程为y米,图8中的折线表示乙在整个行走过程中y与x的函数关系.甲乘坐的电动观光车平均速度为180米/分.
(1)乙行走的总路程是 _________ 米,他在中途休息了 _________ 分钟;
(2)①当25≤x≤35时,求y关于x的函数关系.
②若甲在乙出发后20分钟乘车,则乙出发后几分钟甲能追上乙?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙从同一地点出发,甲乘坐电动观光车,乙步行,沿着同一条山路上山游玩,两人相约在电动车终点站会合.设乙出发x分钟后行走的路程为y米,图中的折线表示乙在整个行走过程中y与x的函数关系.甲乘坐的电动观光车平均速度为180米/分.
(1)乙行走的总路程是______米,他在中途休息了______分钟;
(2)①当25≤x≤35时,求y关于x的函数关系.②若甲在乙出发后20分钟乘车,则乙出发后几分钟甲能追上乙?

查看答案和解析>>


同步练习册答案