精英家教网 > 初中数学 > 题目详情
以三角形的一条中位线和第三边上的中线为对角线的四边形是(  )
A.梯形B.平行四边形C.菱形D.矩形
相关习题

科目:初中数学 来源: 题型:

1、以三角形的一条中位线和第三边上的中线为对角线的四边形是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

以三角形的一条中位线和第三边上的中线为对角线的四边形是(  )
A.梯形B.平行四边形C.菱形D.矩形

查看答案和解析>>

科目:初中数学 来源:《24.4 中位线》2010年同步练习(解析版) 题型:选择题

以三角形的一条中位线和第三边上的中线为对角线的四边形是( )
A.梯形
B.平行四边形
C.菱形
D.矩形

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

以三角形的一条中位线和第三边上的中线为对角线的四边形是


  1. A.
    梯形
  2. B.
    平行四边形
  3. C.
    菱形
  4. D.
    矩形

查看答案和解析>>

科目:初中数学 来源:测试专家八年级数学下册 第19章 四边形、综合检测题 题型:013

以三角形的一条中位线和第三边上的中线为对角线的四边形是

[  ]

A.梯形

B.平行四边形

C.菱形

D.矩形

查看答案和解析>>

科目:初中数学 来源: 题型:013

以三角形一条中位线和第三边上的中线为对角线的四边形是

[  ]

A.梯形  B.平行四边形  C.菱形  D.矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=
12
BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=数学公式BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;

(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);

归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点数学公式数学公式,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是
 
 

精英家教网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
精英家教网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
 
;纵坐标b,d,n,f之间的等量关系为
 

(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点G(-
1
2
c,
5
2
c)
S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>


同步练习册答案