精英家教网 > 初中数学 > 题目详情
在下列图形中:(1)y=
3
x
的函数图象;(2)y=3x2函数的图象;(3)正十边形;(4)正三边形,既是轴对称图形又是中心对称图形的个数为(  )
A.1个B.2个C.3个D.4个
相关习题

科目:初中数学 来源: 题型:

(2012•镇江)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是
(1,-2)
(1,-2)

(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3
x
→y=3
x+2
+1;y=3
3x
→y=3
3x-1
+1;y=
3
x
→y=
3
x
+1;…
(1)若把函数y=
3
x+2
+1图象再往
 
平移
 
个单位,所得函数图象的解析式为y=
3
x-1
+1;
(2)分析下列关于函数y=
3
x-1
+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:
 
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在下列图形中:(1)y=
3
x
的函数图象;(2)y=3x2函数的图象;(3)正十边形;(4)正三边形,既是轴对称图形又是中心对称图形的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在下列图形中:(1)y=
3
x
的函数图象;(2)y=3x2函数的图象;(3)正十边形;(4)正三边形,既是轴对称图形又是中心对称图形的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:2012年江苏省镇江市中考数学试卷(解析版) 题型:解答题

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是______;
(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是______.
【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>


同步练习册答案