精英家教网 > 高中数学 > 题目详情
在(0,2π)上满足sinx>
1
2
的x的取值范围是(  )
A.(0,
π
6
B.(0,
π
6
)∪(
6
,π)
C.(
π
6
6
D.(0,
π
6
)∪(
6
,2π)
相关习题

科目:高中数学 来源: 题型:

在(0,2π)上满足sinx>
1
2
的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在(0,2π)上满足sinx>
1
2
的x的取值范围是(  )
A.(0,
π
6
B.(0,
π
6
)∪(
6
,π)
C.(
π
6
6
D.(0,
π
6
)∪(
6
,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数y=f(x)满足:
f(x+
π
2
)=-f(x)

②函数在[
π
12
12
]
的值域为[m,2],并且?x1x2∈[
π
12
12
]
,当x1<x2时恒有f(x1)<f(x2).
(1)求m的值;
(2)若f(
π
3
+x)=-f(
π
3
-x)
,并且f(
π
4
sinx+
π
3
)>0
求满足条件的x的集合;
(3)设y=g(x)=2cos2x+sinx+m+2,若对于y在集合M中的每一个值,x在区间(0,π)上恰有两个不同的值与之对应,求集合M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义域为R的函数y=f(x)满足:
f(x+
π
2
)=-f(x)

②函数在[
π
12
12
]
的值域为[m,2],并且?x1x2∈[
π
12
12
]
,当x1<x2时恒有f(x1)<f(x2).
(1)求m的值;
(2)若f(
π
3
+x)=-f(
π
3
-x)
,并且f(
π
4
sinx+
π
3
)>0
求满足条件的x的集合;
(3)设y=g(x)=2cos2x+sinx+m+2,若对于y在集合M中的每一个值,x在区间(0,π)上恰有两个不同的值与之对应,求集合M.

查看答案和解析>>


同步练习册答案