精英家教网 > 高中数学 > 题目详情
定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
3
2
),c=f(2),则a,b,c的大小关系为(  )
A.c>a>bB.a>b>cC.a>c>bD.b>a>c
相关习题

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时f(x)=-2(x-3)2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
3
2
),c=f(2),则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三个不同的根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18.若函数y=f(x)-loga(x+1)至少有三个零点,则a的取值范围是(  )
A、(0,
2
2
B、(0,
3
3
C、(0,
5
5
D、(0,
6
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
3
2
),c=f(2),则a,b,c的大小关系为(  )
A.c>a>bB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源:2013-2014学年吉林省白山市高三(上)摸底数学试卷(文科)(解析版) 题型:选择题

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时f(x)=-2(x-3)2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省临沂市高三(上)期中数学试卷(文科)(解析版) 题型:选择题

定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(),c=f(2),则a,b,c的大小关系为( )
A.c>a>b
B.a>b>c
C.a>c>b
D.b>a>c

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高二(下)期末数学试卷(理科)(解析版) 题型:选择题

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时f(x)=-2(x-3)2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市金乡一中高三(上)期末数学模拟试卷(理科)(解析版) 题型:选择题

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>


同步练习册答案