精英家教网 > 高中数学 > 题目详情
等差数列{an}的前m项和Sm=100(m∈N且m≥2),则m(a2+am-1)=(  )
A.100B.200C.300D.400
相关习题

科目:高中数学 来源: 题型:

等差数列{an}的前m项和Sm=100(m∈N且m≥2),则m(a2+am-1)=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的前m项和Sm=100(m∈N且m≥2),则m(a2+am-1)=(  )
A.100B.200C.300D.400

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市崇文区高一(下)期末数学试卷(解析版) 题型:选择题

等差数列{an}的前m项和Sm=100(m∈N且m≥2),则m(a2+am-1)=( )
A.100
B.200
C.300
D.400

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个公差不为0的等差数列{an}共有100项,首项为5,其第1、4、16项分别为正项等比数列{bn}的第1、3、5项.

    (1)求{an}各项的和S;

    (2)记{bn}的末项不大于,求{bn}项数的最值N;

    (3)记{an}前n项和为Sn,{bn}前n项和为Tn,问是否存在自然数m,使Sm=Tn.

   

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前10项和为100,且a4=7,对任意的k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列{bn},设Sn、Tn分别是{an}﹑{bn}前n项和.
(Ⅰ)a10是数列{bn}的第几项?
(Ⅱ)是否存在正整数m,使Tm=2008?若存在,求出m的值;若不存在,请说明理由.
(Ⅲ)若am是数列{bn}的第f(m)项,试比较Tf(m)与Sm+2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*),其前n项和为Sn,给出下列四个命题:
①若{an}是等差数列,则三点(10,
S10
10
)
(100,
S100
100
)
(110,
S110
110
)
共线;
②若{an}是等差数列,且a1=-11,a3+a7=-6,则S1、S2、…、Sn这n个数中必然存在一个最大者;
③若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
④若Sn+1=a1+qSn(其中常数a1q≠0),则{an}是等比数列.
其中正确命题的序号是
①④
①④
.(将你认为的正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}(n∈N*),其前n项和为Sn,给出下列四个命题:
①若{an}是等差数列,则三点(10,
S10
10
)
(100,
S100
100
)
(110,
S110
110
)
共线;
②若{an}是等差数列,且a1=-11,a3+a7=-6,则S1、S2、…、Sn这n个数中必然存在一个最大者;
③若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
④若Sn+1=a1+qSn(其中常数a1q≠0),则{an}是等比数列.
其中正确命题的序号是______.(将你认为的正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2mS2m=2Sm+m2d
表示=______①
用Sm表示SnmSnm=______②
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>


同步练习册答案