精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )
A.当a<0时,x1+x2<0,x1x2>0
B.当a<0时,x1+x2>0,x1x2<0
C.当a>0时,x1+x2<0,x1x2>0
D.当a>0时,x1+x2>0,x1x2<0
相关习题

科目:高中数学 来源:延庆县一模 题型:单选题

已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )
A.当a<0时,x1+x2<0,x1x2>0
B.当a<0时,x1+x2>0,x1x2<0
C.当a>0时,x1+x2<0,x1x2>0
D.当a>0时,x1+x2>0,x1x2<0

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省安庆市望江四中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则( )
A.当a<0时,x1+x2<0,x1x2>0
B.当a<0时,x1+x2>0,x1x2<0
C.当a>0时,x1+x2<0,x1x2>0
D.当a>0时,x1+x2>0,x1x2<0

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省安庆市望江四中高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则( )
A.当a<0时,x1+x2<0,x1x2>0
B.当a<0时,x1+x2>0,x1x2<0
C.当a>0时,x1+x2<0,x1x2>0
D.当a>0时,x1+x2>0,x1x2<0

查看答案和解析>>

科目:高中数学 来源:2013年北京市延庆县高考数学一模试卷(理科)(解析版) 题型:选择题

已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则( )
A.当a<0时,x1+x2<0,x1x2>0
B.当a<0时,x1+x2>0,x1x2<0
C.当a>0时,x1+x2<0,x1x2>0
D.当a>0时,x1+x2>0,x1x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则


  1. A.
    当a<0时,x1+x2<0,x1x2>0
  2. B.
    当a<0时,x1+x2>0,x1x2<0
  3. C.
    当a>0时,x1+x2<0,x1x2>0
  4. D.
    当a>0时,x1+x2>0,x1x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx(a≠0)的定义域为R,它的图象关于原点对称,且当x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)求证:曲线y=f(x)上不存在两个不同的点A、B,使过A、B两点的切线都垂直于直线AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2;
(3)求证:曲线y=f(x)上不存在两个不同的点A,B,使过A,B两点的切线都垂直于直线AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立,求s的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数.且x=-1时,取得极值1.
(1)求f(x)的解析式.
(2)曲线上是否存在两个不同的点A、B,使过A、B的切线都垂直于AB.说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省广州六中高二(下)期中数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立,求s的最小值.

查看答案和解析>>


同步练习册答案