精英家教网 > 高中数学 > 题目详情
将函数y=sin(x+
π
6
)(x∈R)
的图象上所有的点向左平移
π
4
个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为(  )
A.y=sin(2x+
12
)(x∈R)
B.y=sin(
x
2
+
12
)(x∈R)
C.y=sin(
x
2
-
π
12
)(x∈R)
D.y=sin(
x
2
+
24
)(x∈R)
相关习题

科目:高中数学 来源:新疆模拟 题型:单选题

将函数y=sin(x+
π
6
)(x∈R)
的图象上所有的点向左平移
π
4
个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为(  )
A.y=sin(2x+
12
)(x∈R)
B.y=sin(
x
2
+
12
)(x∈R)
C.y=sin(
x
2
-
π
12
)(x∈R)
D.y=sin(
x
2
+
24
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•兰州一模)将函数y=sin(x+
π
6
)(x∈R)
的图象上所有的点向左平移
π
4
个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x+
π
6
)(x∈R)的图象上所有点向右平移
π
3
个单位(纵坐标不变),则所得到的图象的解析式是
y=-cos2x
y=-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x+
π
6
)(x∈R)的图象上所有点向右平移
π
3
个单位(纵坐标不变),则所得到的图象的解析式是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数y=sin(2x+
π
6
)(x∈R)的图象上所有点向右平移
π
3
个单位(纵坐标不变),则所得到的图象的解析式是(  )
A.y=-cos2xB.y=cos2x
C.y=sin(2x+
6
D.y=sin(2x-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=sin(2x+
π
3
)
的图象,只要将y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了得到函数y=sin(2x+
π
3
)
的图象,只要将y=sinx(x∈R)的图象上所有的点(  )
A.向左平移
π
3
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
B.向左平移
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移
π
6
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
D.向左平移
π
6
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①已知命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0.命题p和q都是真命题;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0或2x+y=0;
③函数f(x)=lnx+2x-1在定义域内有且只有一个零点;
④先将函数y=sin(2x-
π
3
)
的图象向左平移
π
6
个单位,再将新函数的周期扩大为原来的两
倍,则所得图象的函数解析式为y=sinx.
其中正确命题的序号为
①②③④
①②③④
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下四个命题:
①已知命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0.命题p和q都是真命题;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0或2x+y=0;
③函数f(x)=lnx+2x-1在定义域内有且只有一个零点;
④先将函数y=sin(2x-
π
3
)
的图象向左平移
π
6
个单位,再将新函数的周期扩大为原来的两
倍,则所得图象的函数解析式为y=sinx.
其中正确命题的序号为______.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有
②③
②③
(填写所有真命题的序号).

查看答案和解析>>


同步练习册答案