精英家教网 > 高中数学 > 题目详情
函数f(x)=ln(x2+1)的图象大致是(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
相关习题

科目:高中数学 来源:福建 题型:单选题

函数f(x)=ln(x2+1)的图象大致是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2013年福建省高考数学试卷(文科)(解析版) 题型:选择题

函数f(x)=ln(x2+1)的图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)函数f(x)=ln(x2+1)的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx,a∈R.
(1)当a=-1时,求f(x)的最大值;
(2)求证:ln(n+1)<1+
1
2
+
1
3
+…+
1
n
(n∈N+)

(3)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=数学公式x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-数学公式<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源:葫芦岛模拟 题型:解答题

已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省实验中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省实验中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源:2011-2012年辽宁省葫芦岛市高三第三次联考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+ex)-mx(x∈R).
(Ⅰ)已知对于给定区间(a,b),存在x0∈(a,b)使得
f(b)-f(a)
b-a
=f′(x0)
成立,求证:x0唯一;
(Ⅱ)x1,x2∈R,x1≠x2,当m=1时,比较f(
x1+x2
2
)和
f(x1)+f(x2)
2
大小,并说明理由;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-mx(x∈R,m≥1)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>


同步练习册答案