精英家教网 > 高中数学 > 题目详情
已知x,y都在区间(-2,2)内,且xy=-1,则函数u=
4
4-x2
+
9
9-y2
的最小值是(  )
A.
8
5
B.
24
11
C.
12
7
D.
12
5
相关习题

科目:高中数学 来源: 题型:

已知x,y都在区间(-2,2)内,且xy=-1,则函数u=
4
4-x2
+
9
9-y2
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知x,y都在区间(-2,2)内,且xy=-1,则函数u=
4
4-x2
+
9
9-y2
的最小值是(  )
A.
8
5
B.
24
11
C.
12
7
D.
12
5

查看答案和解析>>

科目:高中数学 来源:2013年全国高校自主招生数学模拟试卷(六)(解析版) 题型:选择题

已知x,y都在区间(-2,2)内,且xy=-1,则函数u=+的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知x,y都在区间(-2,2)内,且xy=-1,则函数u=数学公式+数学公式的最小值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+lnx,g(x)=ex
(I)当a≤0时,求f(x)的单调区间;
(Ⅱ)若不等式数学公式有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数y=F(x)和y=G(x)在其公共定义域内的任意实数x0,称|F(x0)-G(x0)|的值为两函数在x0处的差值.证明:当a=0时,函数y=f(x)和y=g(x)在其公共定义域内的所有差值都大干2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x+数学公式(x>0)有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+数学公式和y=x2+数学公式(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=数学公式+数学公式在区间[数学公式,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x+数学公式有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+数学公式和y=x2+数学公式(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=数学公式+数学公式(n是正整数)在区间[数学公式,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:2006-2007学年江苏省常州高级中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数y=x+(x>0)有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+和y=x2+(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=+在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市六校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=+(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:2011年上海市宝山区行知中学高考数学模拟试卷(理科)(解析版) 题型:解答题

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=+(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>


同步练习册答案