精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)在区间[0,5]上是增函数,那么下列不等式中成立的是(  )
A.f(4)>f(-π)>f(3)B.f(π)>f(3)>f(4)
C.f(4)>f(3)>f(π)D.f(-3)>f(-π)>f(-4)
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间[0,5]上是增函数,那么下列不等式中成立的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知奇函数f(x)在区间[0,5]上是增函数,那么下列不等式中成立的是(  )
A.f(4)>f(-π)>f(3)B.f(π)>f(3)>f(4)
C.f(4)>f(3)>f(π)D.f(-3)>f(-π)>f(-4)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都市树德中学高一(上)10月月考数学试卷(解析版) 题型:选择题

已知奇函数f(x)在区间[0,5]上是增函数,那么下列不等式中成立的是( )
A.f(4)>f(-π)>f(3)
B.f(π)>f(3)>f(4)
C.f(4)>f(3)>f(π)
D.f(-3)>f(-π)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是(  )
A.-2≤a≤3B.a≤-1或a≥2C.-1≤a≤2D.a≤-2或a≥3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则(  )
A.f(2)<f(5)<f(8)B.f(5)<f(8)<f(2)C.f(5)<f(2)<f(8)D.f(8)<f(2)<f(5)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省天水一中高三(上)第三次考试数学试卷(文科)(解析版) 题型:选择题

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(2)<f(5)<f(8)
B.f(5)<f(8)<f(2)
C.f(5)<f(2)<f(8)
D.f(8)<f(2)<f(5)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高二(下)期末数学试卷(文科)(解析版) 题型:选择题

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是( )
A.-2≤a≤3
B.a≤-1或a≥2
C.-1≤a≤2
D.a≤-2或a≥3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高二(下)期末数学试卷(理科)(解析版) 题型:选择题

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是( )
A.-2≤a≤3
B.a≤-1或a≥2
C.-1≤a≤2
D.a≤-2或a≥3

查看答案和解析>>


同步练习册答案