精英家教网 > 高中数学 > 题目详情
如图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
魔方格
相关习题

科目:高中数学 来源: 题型:

3、如图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网
精英家教网

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习巩固与练习:函数的图象(解析版) 题型:选择题

如图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

科目:高中数学 来源:0103 期末题 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线:x=-4为准线的椭圆。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市清江附中高三(上)第二次调研数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁中学高三(上)第二次调研数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州市高三(上)期末数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市清江附中高三(上)第二次调研数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁中学高三(上)第二次调研数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长.

查看答案和解析>>


同步练习册答案