精英家教网 > 高中数学 > 题目详情
当x1≠x2时,有f(
x1+x2
2
f(x1)+f(x2
2
,则称函数f(x)是“严格下凸函数”,下列函数是严格下凸函数的是(  )
A.y=xB.y=|x|C.y=x2D.y=log2x
相关习题

科目:高中数学 来源: 题型:

当x1≠x2时,有f(
x1+x2
2
f(x1)+f(x2
2
,则称函数f(x)是“严格下凸函数”,下列函数是严格下凸函数的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当x1≠x2时,有f(
x1+x2
2
f(x1)+f(x2
2
,则称函数f(x)是“严格下凸函数”,下列函数是严格下凸函数的是(  )
A.y=xB.y=|x|C.y=x2D.y=log2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当x1≠x2时,有f(
x1+x2
2
f(x1)+f(x2
2
,则称函数f(x)是“严格下凸函数”,下列函数是严格下凸函数的是(  )
A.y=xB.y=|x|C.y=x2D.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

如果在(a,b)(a<b)上的函数f(x),对于?x1,x2∈(a,b)都有f(
x1+x2
2
1
2
[f(x1)+f(x2)]
(x1≠x2),则称f(x)在(a.b)上是凹函数,设f(x)在(a,b)上可导,其函数f′(x)在(a,b)上也可导,并记[f′(x)]′=f″(x)
(1)如果f(x)在(a,b)上f″(x)>0,证明:f(x)在(a,b)上是凹函数
(2)若f(x)=(x2-2ax-a+a2)ex-lnx,用(1)的结论证明:当a<-2时f(x)在(0,+∞)上是凹函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数,对任意x1,x2∈R,都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
,则称函数f(x)是R上的凸函数.已知二次函数f(x)=ax2+x(a∈R,a≠0).
(1)求证:当a<0时,函数f(x)是凸函数;
(2)对任意x∈(0,1],f(x)≥-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数,对任意x1,x2∈R,都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
,则称函数f(x)是R上的凸函数.已知二次函数f(x)=ax2+x(a∈R,a≠0).
(1)求证:当a<0时,函数f(x)是凸函数;
(2)对任意x∈(0,1],f(x)≥-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果f(x)在某个区间I内满足:对任意的x1,x2∈I,都有
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
,则称f(x)在I上为下凸函数;已知函数f(x)=
1
x
-alnx

(Ⅰ)证明:当a>0时,f(x)在(0,+∞)上为下凸函数;
(Ⅱ)若f'(x)为f(x)的导函数,且x∈[
1
2
,2]
时,|f'(x)|<1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果f(x)在某个区间I内满足:对任意的x1,x2∈I,都有
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
,则称f(x)在I上为下凸函数;已知函数f(x)=
1
x
-alnx

(Ⅰ)证明:当a>0时,f(x)在(0,+∞)上为下凸函数;
(Ⅱ)若f'(x)为f(x)的导函数,且x∈[
1
2
,2]
时,|f'(x)|<1,求实数a的取值范围.

查看答案和解析>>


同步练习册答案