精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域是{x|x∈R且x≠kπ+
π
2
 (k∈Z}
,函数f(x)满足f(x)=f(x+π),当x∈(-
π
2
, 
π
2
)
时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3),则(  )
A.a<c<bB.b<c<aC.c<b<aD.c<a<b
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是{x|x∈R且x≠kπ+
π
2
 (k∈Z}
,函数f(x)满足f(x)=f(x+π),当x∈(-
π
2
, 
π
2
)
时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3),则(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的定义域是{x|x∈R且x≠kπ+
π
2
 (k∈Z}
,函数f(x)满足f(x)=f(x+π),当x∈(-
π
2
, 
π
2
)
时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3),则(  )
A.a<c<bB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源:普宁市模拟 题型:解答题

已知函数f(x)的定义域是{x|x∈R,x≠
k
2
,k∈Z}
且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当0<x<
1
2
时,f(x)=3x
(1)求证:f(x)是奇函数;
(2)求f(x)在区间(2k+
1
2
,2k+1)(k∈
Z)上的解析式;
(3)是否存在正整数k,使得当x∈(2k+
1
2
,2k+1)
时,不等式log3f(x)>x2-kx-2k有解?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)证明f(x)在(0,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是{x|4p-1<x<2p+1},则p的取值范围为
p<1
p<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)证明f(x)在(0,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)的定义域是{x|4p-1<x<2p+1},则p的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)证明f(x)在(0,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源:2010年湖北省荆门市龙泉中学高三数学综合训练01(理科)(解析版) 题型:解答题

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)证明f(x)在(0,+∞)上是增函数;

查看答案和解析>>


同步练习册答案