精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=x2+2(p-2)x+p,若在区间[0,1]内至少存在一个实根c,使f(c)>0,则实根p的取值范围是(  )
A.(1,4)B.(1,+∞)C.(0,+∞)D.(0,1)
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(p-2)x+p,若在区间[0,1]内至少存在一个实根c,使f(c)>0,则实根p的取值范围是(  )
A、(1,4)B、(1,+∞)C、(0,+∞)D、(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=x2+2(p-2)x+p,若在区间[0,1]内至少存在一个实根c,使f(c)>0,则实根p的取值范围是(  )
A.(1,4)B.(1,+∞)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知二次函数f(x)=x2+2(p-2)x+p,若在区间[0,1]内至少存在一个实根c,使f(c)>0,则实根p的取值范围是


  1. A.
    (1,4)
  2. B.
    (1,+∞)
  3. C.
    (0,+∞)
  4. D.
    (0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+p+3.
(1)若函数在区间[-1,1]上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,f(x)的值域为区间D,且D的长度为12-q.(注:区间[a,b](a<b)的长度为b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(|x|)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+px+q,当f(x)<0时,有-
1
2
<x<
1
3

(1)求p和q的值;
(2)解不等式qx2+px+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x+t与两坐标轴分别交于不同的三点A、B、C.
(1)求实数t的取值范围;
(2)当t=-3时,求经过A、B、C三点的圆F的方程;
(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形MPNQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年北京市崇文区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省泉州七中高二(下)期中数学试卷(文科)(解析版) 题型:解答题

已知二次函数f(x)=x2-16x+p+3.
(1)若函数在区间[-1,1]上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,f(x)的值域为区间D,且D的长度为12-q.(注:区间[a,b](a<b)的长度为b-a).

查看答案和解析>>


同步练习册答案