精英家教网 > 高中数学 > 题目详情
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.则不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)
相关习题

科目:高中数学 来源: 题型:

9、设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设f (x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(  )?

查看答案和解析>>

科目:高中数学 来源: 题型:

11、设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则f(x)g(x)<0的解集为
(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)分别是定义域在R上的奇函数和偶函数,当x<0时,f'(x)g(x)-f(x)g'(x)>0且f(-3)=0,g(x)≠0,则不等式
f(x-2)g(2-x)
<0的解集是
(-∞,-1)∪(2,5)
(-∞,-1)∪(2,5)

查看答案和解析>>

科目:高中数学 来源:湖南 题型:单选题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.则不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源:西山区模拟 题型:填空题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则f(x)g(x)<0的解集为 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f (x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(  )?
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪一中高三(上)期中数学试卷(解析版) 题型:选择题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-2)=0,则不等式f(x)g(x)<0的解集是( )
A.(-2,0)∪(2,+∞)
B.(-2,0)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省无锡一中高三(上)第一次质量检测数学试卷.(理科)(解析版) 题型:填空题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则f(x)g(x)<0的解集为    

查看答案和解析>>


同步练习册答案