精英家教网 > 高中数学 > 题目详情
若f(x)=lnx,则f′(x)等于(  )
A.
1
x
B.xC.lnxD.-x
相关习题

科目:高中数学 来源: 题型:

若f(x)=lnx,则f′(x)等于(  )

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市朝阳区高二(下)期末数学试卷(文科)(解析版) 题型:选择题

若f(x)=lnx,则f′(x)等于( )
A.
B.
C.ln
D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=lnx,则f′(x)等于(  )
A.
1
x
B.xC.lnxD.-x

查看答案和解析>>

科目:高中数学 来源:北京期末题 题型:单选题

若f(x)=lnx,则f′(x)等于

[     ]

A.
B.x
C.lnx
D.-x

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lnx-ax在点P(1,b)处的切线与x+3y-2=0垂直,则2a+b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时;
(i)求g(x)的单调区间;
(ii)证明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=lnx-ax在点P(1,b)处的切线与x+3y-2=0垂直,则2a+b等于(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:解答题

若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时;
(i)求g(x)的单调区间;
(ii)证明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源:2011年河南省安阳市高二综合检测数学试卷(选修2-2)(解析版) 题型:选择题

若函数f(x)=lnx-ax在点P(1,b)处的切线与x+3y-2=0垂直,则2a+b等于( )
A.2
B.0
C.-1
D.-2

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市高考数学一诊模拟试卷2(理科)(解析版) 题型:解答题

若函数f(x)满足:在定义域内存在实数x,使f(x+k)=f(x)+f(k)(k为常数),则称“f(x)关于k可线性分解”.
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时;
(i)求g(x)的单调区间;
(ii)证明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>


同步练习册答案