精英家教网 > 高中数学 > 题目详情
若数列{an}的通项公式为an=2n+5,则此数列是(  )
A.公差为2的等差数列B.公差为5的等差数列
C.首项为5的等差数列D.公差为n的等差数列
相关习题

科目:高中数学 来源: 题型:

若数列{an}的通项公式为an=2n+5,则此数列是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若数列{an}的通项公式为an=2n+5,则此数列是(  )
A.公差为2的等差数列B.公差为5的等差数列
C.首项为5的等差数列D.公差为n的等差数列

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门二中高二(上)数学国庆作业5(文科)(解析版) 题型:选择题

若数列{an}的通项公式为an=2n+5,则此数列是( )
A.公差为2的等差数列
B.公差为5的等差数列
C.首项为5的等差数列
D.公差为n的等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项公式为
a
 
n
=5×(
2
5
)2n-2-4×(
2
5
)n-1(n∈N+)
,{an}的最大值为第x项,最小项为第y项,则x+y等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田一中高三(上)期中数学试卷(理科)(解析版) 题型:填空题

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省厦门一中高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明市泰宁一中高三(上)第三次段考数学试卷(理科)(解析版) 题型:填空题

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田一中高三(上)期中数学试卷(理科)(解析版) 题型:填空题

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=   

查看答案和解析>>


同步练习册答案