精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和Sn=n2+1,则a8的值为(  )
A.15B.16C.49D.64
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=n2+1,则a8的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设数列{an}的前n项和Sn=n2+1,则a8的值为(  )
A.15B.16C.49D.64

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市朝阳区高一(下)期末数学试卷(解析版) 题型:解答题

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>


同步练习册答案