精英家教网 > 初中数学 > 题目详情
设y=kx+b,当x=1时,y=1:当x=2时,y=4,那么(  )
A.k=3,b=-2B.k=-2,b=3C.k=-3,b=2D.k=-3,b=-2
相关习题

科目:初中数学 来源: 题型:

设y=kx+b,当x=1时,y=1:当x=2时,y=4,那么(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设y=kx+b,当x=1时,y=1:当x=2时,y=4,那么(  )
A.k=3,b=-2B.k=-2,b=3C.k=-3,b=2D.k=-3,b=-2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(29):25.3 轴对称变换(解析版) 题型:解答题

如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的对称》(03)(解析版) 题型:解答题

(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年湖北省咸宁市中考数学试卷(解析版) 题型:解答题

(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料:
在平面直角坐标系中,若点P1(x1,y1)、P2(x2,y2),则P1、P2两点间的距离为数学公式.例如:若
P1(3,4)、P2(0,0),则P1、P2两点间的距离为数学公式
设⊙O是以原点O为圆心,以1为半径的圆,如果点P(x,y)在⊙O上,那么有等式数学公式,即x2+y2=1成立;反过来,如果点P(x,y)的坐标满足等式x2+y2=1,那么点P必在⊙O上,这时,我们就把等式x2+y2=1称为⊙O的方程.
在平面直角坐标系中,若点P0(x0,y0),则P0到直线y=kx+b的距离为数学公式
请解答下列问题:
(I)写出以原点O为圆心,以r(r>0)为半径的圆的方程.
(II)求出原点O到直线数学公式的距离.
(III)已知关于x、y的方程组:数学公式,其中n≠0,m>0.
①若n取任意值时,方程组都有两组不相同的实数解,求m的取值范围.
②当m=2时,记两组不相同的实数解分别为(x1,y1)、(x2,y2),
求证:数学公式是与n无关的常数,并求出这个常数.

查看答案和解析>>


同步练习册答案