精英家教网 > 初中数学 > 题目详情
设a、b为正整数(a>b),p是a、b的最大公约数,q是a、b的最小公倍数,则p,q,a,b的大小关系是(  )
A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q
相关习题

科目:初中数学 来源:广东省中考真题 题型:解答题

如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M。
(1)求抛物线的解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年贵州省黔西南州中考数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

设a、b为正整数(a>b),p是a、b的最大公约数,q是a、b的最小公倍数,则p,q,a,b的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设a、b为正整数(a>b),p是a、b的最大公约数,q是a、b的最小公倍数,则p,q,a,b的大小关系是(  )
A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.

1.当t=1时,正方形EFGH的边长是            

当t=3时,正方形EFGH的边长是            

2.当0<t≤2时,求S与t的函数关系式;

3. 直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省淮安市涟水县九年级中考模拟(一)数学试卷(带解析) 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.
【小题1】当t=1时,正方形EFGH的边长是            
当t=3时,正方形EFGH的边长是            
【小题2】当0<t≤2时,求S与t的函数关系式;
【小题3】直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省淮安市涟水县九年级中考模拟(一)数学试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.[来源:Zxxk.Com]

1.当t=1时,正方形EFGH的边长是            

当t=3时,正方形EFGH的边长是             

2.当0<t≤2时,求S与t的函数关系式;

3. 直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为精英家教网t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.
(1)当t=1时,正方形EFGH的边长是
 
.当t=3时,正方形EFGH的边长是
 

(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

查看答案和解析>>


同步练习册答案