精英家教网 > 初中数学 > 题目详情
已知两个圆的半径R,r,圆心距d可以构成三角形,则这两个圆的位置关系为(  )
A.内切B.相交C.外切D.外离
相关习题

科目:初中数学 来源: 题型:

已知两个圆的半径R,r,圆心距d可以构成三角形,则这两个圆的位置关系为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两个圆的半径R,r,圆心距d可以构成三角形,则这两个圆的位置关系为(  )
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:初中数学 来源:2012年湖南省湘潭市江声实验学校中考数学模拟试卷(二)(解析版) 题型:选择题

已知两个圆的半径R,r,圆心距d可以构成三角形,则这两个圆的位置关系为( )
A.内切
B.相交
C.外切
D.外离

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知两个圆的半径R,r,圆心距d可以构成三角形,则这两个圆的位置关系为


  1. A.
    内切
  2. B.
    相交
  3. C.
    外切
  4. D.
    外离

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两个圆的半径R,r圆心距d可以构成三角形,则这两个圆的位置关系为(    )

A.内切                  B.相交              C.外切             D.外离

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限). 另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD. 已知木栏总长为120米,设AB边的长为x米.长方形ABCD 的面积为 S平方米.
(1)求 S与x 之间的函数关系式(不要求写出自变量x 的取值范围). 当 x为何值时, S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆. 其圆心分别为, 且到 AB、BC、AD 的距离与到 CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面. 以方便同学们参观学习. 当(1)中 S取得最大值时.请问这个设计是否可行?若可行,求出圆的半径;若不可行.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米。
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围),当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习。当(1)中S取得最值时,请问这个设计是否可行? 若可行,求出圆的半径;若不可行,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市海淀区九年级(上)期末数学模拟试卷(解析版) 题型:解答题

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省苏州市星海中学中考数学二模试卷(解析版) 题型:解答题

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>


同步练习册答案