精英家教网 > 初中数学 > 题目详情
两数相加,如果和是非正数,这两个数(  )
A.都是负数
B.都是正数
C.一正一负
D.至少有一为负,或两数均为0
相关习题

科目:初中数学 来源: 题型:

1、两数相加,如果和是非正数,这两个数(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两数相加,如果和是非正数,这两个数(  )
A.都是负数
B.都是正数
C.一正一负
D.至少有一为负,或两数均为0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

两数相加,如果和是非正数,这两个数


  1. A.
    都是负数
  2. B.
    都是正数
  3. C.
    一正一负
  4. D.
    至少有一为负,或两数均为0

查看答案和解析>>

科目:初中数学 来源: 题型:

25、有一个“猜成语”游戏,其规则是:参加游戏的每两个人一组,主持人出示一块写有成语的牌子给两个人中的一人(甲)看,但是另一个(乙)是看不到牌子上的成语的?现在我们把这个游戏中的成语改成两个整数,要求甲用一句话或者一个式子、一个图形告诉乙这两个数(同样要求不能出现与牌子上相同的数字)?如果你是甲,对于下面两个数:“-1和1”将怎样告诉乙?(至少说出两种)
你的解答是
方法一:
这两个数是最大的负整数和最小的正整数

方法二:
这两个数互为相反数,且是每个数的绝对值为最小的非0整数

查看答案和解析>>

科目:初中数学 来源: 题型:044

我国著名数学家华罗庚曾说过:撌?毙问鄙僦惫郏?紊偈?蹦讶胛ⅲ皇?谓岷习侔愫茫?衾敕旨彝蚴滦輸.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

例如,求1234+…+n的值,其中n是正整数.

对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1234+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为123,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1234+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n1)个小圆圈,所以组成平行四边形小圆圈的总个数为nn1)个,因此,组成一个三角形小圆圈的个数为,即1234+…+n

(1)仿照上述数形结合的思想方法,设计相关图形,求1357+…+(2n1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1357+…+(2n1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源:2006年山东省青岛市中考数学试题(课标版) 课标版 题型:044

  我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

  数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

  例如,求1+2+3+4+…+n的值,其中n是正整数.

  对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

  如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=

(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源: 题型:044

我国著名数学家华罗庚曾说过:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

例如,求1234n的值,其中n是正整数.

对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1234n 的值,方案如下:如图,斜线左边的三角形图案 是由上到下每层依次分别为123n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1234n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n1)个,因此,组成一个三角形小圆圈的个数为,即

(1)仿照上述数形结合的思想方法,设计相关图形,求1357(2n1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1357(2n1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.
数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,精英家教网并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”。数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透。数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案。例如,求1+2+3+4+…+n的值,其中n是正整数。对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论。如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观。现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的。而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值。为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形。此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求:画出图形,并利用图形做必要的推理说明)。
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求:画出图形,并利用图形做必要的推理说明)。

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教网
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>


同步练习册答案