一个分数的分子与分母都是正整数,且分子比分母小1,若分子和分母都减去1,则所得分数为小于
|
科目:初中数学 来源: 题型:
| 6 |
| 7 |
| A、5个 | B、6个 | C、7个 | D、8个 |
科目:初中数学 来源:不详 题型:单选题
| 6 |
| 7 |
| A.5个 | B.6个 | C.7个 | D.8个 |
科目:初中数学 来源:新课标教材导学 数学九年级(第一学期) 题型:038
计算:
+
+…+
+
(n为正整数).
这个式子共有n项,属于异分母分数加减的类型.如果先通分,将各项化为同分母分数的话,分母将十分庞大,这是很困难的,在实际运算的时候也是不现实的,那么怎么办呢?
让我们分析一下各项的特点:都是
的形式,当n取从1开始渐次增大的自然数时,就是各项了.可以把
看成是各项的代表式.我们知道
-
=
=
,
故
=
-
.
利用这一点,每一项都可以拆成两项,由于n是按自然数逐次递增的,所以前后两项拆开后会有相同部分可以抵消,如:
-![]()
=(
-
)+(
-
)
=1-
+
-![]()
=
.
所以可得
+
+…+
+![]()
=(
-
)+(
-
)+…+(
-
)+(
-
)
=1-
+
-
+…+
-
+
-![]()
=1-![]()
=
.
看!经过拆项以后,原本很复杂的计算,一下子简单了!诺长的一个式子,最后的结果也很简单.“巧拆”带来“巧算”.
利用这样拆分的方法,你想想下面的计算题,能否做到又快又准呢?
(1)
+
+…+
(n为大于2的整数);
(2)
+
+…+
(n为正整数);
(3)
+
+…+
(n为正整数).
在你完成上面的计算后,可与同学们讨论一下,对于
+
+…+
(n为正整数)
能否还采用这样的拆项方法进行巧算?为什么?再与同学们探索一下,对于下面的式子,如何计算?
+
+
+…+
(n为正整数).
科目:初中数学 来源: 题型:单选题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com