精英家教网 > 初中数学 > 题目详情
已知a是任意有理数,则|-a|-a的值是(  )
A.必大于零B.必小于零C.必不大于零D.必不小于零
相关习题

科目:初中数学 来源: 题型:

12、已知a是任意有理数,则|-a|-a的值是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知a是任意有理数,则|-a|-a的值是(  )
A.必大于零B.必小于零C.必不大于零D.必不小于零

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
对于任意正实数a,b,因为(
a
-
b
)2≥0
,所以a-2
ab
+b≥0
,所以a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

(1)根据上述内容,回答下列问题:若m>0,只有当m=
 
时,m+
1
m
有最小值
 

(2)探索应用:如图,有一均匀的栏杆,一端固定在A点,在离A端2米的B处垂直挂着一个质量为8千克的重物.若已知每米栏杆的质量为0.5千克,现在栏杆的另一端C用一个竖直向上的拉力F拉住栏杆,使栏杆水平平衡.试精英家教网问栏杆多少长时,所用拉力F最小?是多少?

查看答案和解析>>

科目:初中数学 来源:浙江省月考题 题型:解答题

阅读理解:对于任意正实数a、b,
≥0,
≥0,
,只有当a=b时,等号成立
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。
∵m>0,(定值),
由以上结论可得:只有当m=       时,镜框周长有最小值是      
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解:
对于任意正实数a,b,因为(
a
-
b
)2≥0
,所以a-2
ab
+b≥0
,所以a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

(1)根据上述内容,回答下列问题:若m>0,只有当m=______时,m+
1
m
有最小值______;
(2)探索应用:如图,有一均匀的栏杆,一端固定在A点,在离A端2米的B处垂直挂着一个质量为8千克的重物.若已知每米栏杆的质量为0.5千克,现在栏杆的另一端C用一个竖直向上的拉力F拉住栏杆,使栏杆水平平衡.试问栏杆多少长时,所用拉力F最小?是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab

又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根据上述内容,回答下列问题:在a+b≥2
ab
(a、b均为正实数)中,若ab为定值p,则a+b≥2
p
,当且仅当a、b满足
 
时,a+b有最小值2
p

(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
ab
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=
4
x
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB,垂足为点D,则cosA=
ADb
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
这个结论就是著名的余弦定理.在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
(1)在锐角△ABC中,已知∠A=60°,b=5,c=7,试利用①,②,③求出a,∠B,∠C,的数值;
(2)已知在锐角△ABC中,三边a,b,c分别是7,8,9,求出∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

科目:初中数学 来源:2012年浙江省宁波市小曹娥中学自主招生考试数学摸拟试卷(三)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2012年河南省中考数学热身卷(二)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年福建省龙岩市连城一中自主招生考试数学试卷(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>


同步练习册答案