精英家教网 > 初中数学 > 题目详情
已知:a<0,b>0,且|a|>|b|,则|b+1|-|a-b|等于(  )
A.2b-a+1B.1+aC.a-1D.-1-a
相关习题

科目:初中数学 来源: 题型:

15、已知:a<0,b>0,且|a|>|b|,则|b+1|-|a-b|等于(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:a<0,b>0,且|a|>|b|,则|b+1|-|a-b|等于(  )
A.2b-a+1B.1+aC.a-1D.-1-a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,请你用量角器直接量出∠DAE的度数;
(2)若△ABC中,∠B=α,∠C=β(α<β),根据第一问的结果大胆猜想∠DAE与α、β间的等量关系,不必说理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

关于x的一元二次方程ax2+bx+c=0中,当b2-4a≥0,方程的两个根x1和x2不相等或相等,而且有x1+x2=-数学公式,x1•x2=数学公式;当b2-4ac<0时,方程无实数解.比如方程x2-7x+12=0的两根x1=3,x2=4,则有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程无解.根据以上情况解下列问题.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是关于x的方程x2-(m-1)x+(m+4)=0的两根,当AB=5时:(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中数学 来源:2007-2008学年江苏省泰州市兴化市昭阳镇初中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

关于x的一元二次方程ax2+bx+c=0中,当b2-4a≥0,方程的两个根x1和x2不相等或相等,而且有x1+x2=-,x1•x2=;当b2-4ac<0时,方程无实数解.比如方程x2-7x+12=0的两根x1=3,x2=4,则有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程无解.根据以上情况解下列问题.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是关于x的方程x2-(m-1)x+(m+4)=0的两根,当AB=5时:(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法中: ①直线y=-2x+4与直线y=x+1的交点坐标是(1,1);②一次函数=kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=-6x是一次函数,且y随着x的增大而减小;④已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为y=-x+6;⑤在平面直角坐标系中,函数的图象经过一、二、四象限⑥若一次函数中,y随x的增大而减小,则m的取值范围是m>3学科网(Zxxk.Com)⑦点A的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(-1,1);⑧直线y=x―1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个.      正确的有(   )

A.2个   B.3个     C.4个    D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的一元二次方程ax2+bx+c=0中,当b2-4a≥0,方程的两个根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;当b2-4ac<0时,方程无实数解.比如方程x2-7x+12=0的两根x1=3,x2=4,则有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程无解.根据以上情况解下列问题.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是关于x的方程x2-(m-1)x+(m+4)=0的两根,当AB=5时:(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

关于x的一元二次方程ax2+bx+c=0中,当b2-4a≥0,方程的两个根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;当b2-4ac<0时,方程无实数解.比如方程x2-7x+12=0的两根x1=3,x2=4,则有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程无解.根据以上情况解下列问题.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是关于x的方程x2-(m-1)x+(m+4)=0的两根,当AB=5时:(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中数学 来源:福建省中考真题 题型:解答题

已知抛物线y=2x2,⊙O与抛物线交于A、B两点,AB两点所在的直线为l,⊙O的半径为2。
(1)当x>xB时,抛物线上存在一动点C,则随着C点的向上运动,三角形ABC面积不断增加,问三角形ABC面积每秒的增加量△S是什么?(友情提醒:C点的速度为v0·s-1);
(2)存在一点D在劣弧AB上运动(不与A、B重合)设D(h,k),问抛物线上是否存在点E使得三角形ABD与三角形ABE的面积相等?若存在,求出点E;若不存在,请说明理由;
(3)F(m,n)(m>0)是抛物线y=2x2上的点,OF⊥FG,G(a,0)(a>m),△OFG的面积为S,且S=4n4,n是不大于40的整数,求OF2的最小值;
(4)在抛物线上取两点J、K,xJ<0,xk>0,连接OJ、JK、OK,使得角OKJ=60°,再以OK、OJ、JK分别作等边三角形OKL、OJM、OKN,请你求出经过M、N、L三点的抛物线的解析式。

查看答案和解析>>


同步练习册答案