精英家教网 > 初中数学 > 题目详情
一个数加上-12得-5,那么这个数为(  )
A.17B.7C.-17D.-7
相关习题

科目:初中数学 来源: 题型:

6、一个数加上-12得-5,那么这个数为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个数加上-12得-5,那么这个数为(  )
A.17B.7C.-17D.-7

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市九年级下学期第一次月考数学试卷(解析版) 题型:解答题

重庆市某小企业为了节能,以行动支持创全国环保模范城市,从去年1至6月,该企业用水量(吨)与月份x(,且x取整数)之间的函数关系如下表:

月份x(月)

1

2

3

4

5

6

用水量(吨)

300

150

100

75

60

50

 

 

 

去年7至12月,用水量(吨)与月份x(,且x取整数)的变化情况满足二次函数,且去年7月和去年8月该企业的用水量都为62吨. (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出与x之间的函数关系式.并且直接写出与x之间的函数关系式;

(2) 政府为了鼓励企业节约用水,决定对每月用水量不超过300吨的企业进行奖励. 去年1至6月奖励标准如下,以每月用水量300吨为标准,不足300吨的用水量每吨奖励资金(元)与月份x满足函数关系式,且x取整数),如该企业去年3月用水量为100吨,那么该企业得到奖励资金为()z元;去年7至12月奖励标准如下:以每月用水量300吨为标准,不足300吨的每吨奖励10元,如该企业去年7月份的用水量为62吨,那么该企业得到奖励资金为()×10元.请你求出去年哪个月政府奖励该企业的资金最多,并求出这个最多资金;

(3)在(2)问的基础上,今年1至6月,政府继续加大对节能企业的奖励,奖励标准如下:以每月用水量300吨为标准,不足300吨的部分每吨补助比去年12月每吨补助提高m%.在此影响下,该企业继续节水,1至3月每月的用水量都在去年3月份的基础上减少40吨.4至6月每月的用水量都在去年5月份的基础上减少m%,若政府今年1至6月奖励给该企业的资金为18000元,请你参考以下数据,估算出 m的整数值.(参考数据:          

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算数学公式(9-1)、数学公式(9+1)与数学公式(25-1)、数学公式(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2012年四川省内江市市中区中考数学模拟试卷(解析版) 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2004•三明)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省泰州市泰兴市五校联考中考数学模拟试卷(解析版) 题型:解答题

(2004•三明)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考数学模拟卷(2)(解析版) 题型:解答题

(2004•三明)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省常州市3月数学中考模拟卷(解析版) 题型:解答题

(2004•三明)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省淮南市潘集区九年级(下)第七次联考数学试卷(解析版) 题型:解答题

(2004•三明)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1)、(9+1)与(25-1)、(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>


同步练习册答案