精英家教网 > 初中数学 > 题目详情
若a<0,点M(1,a)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限
相关习题

科目:初中数学 来源: 题型:

(2013•湖州一模)如图,平面直角坐标系xOy中,Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).
(1)直接写出点D的坐标.
(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形?若存在,求出P与Q的坐标.
(3)当点P运动到∠DOP=45度时,求抛物线的对称轴.
(4)求代数式a+b+c的值的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,是反比例函数y=
k1
x
和y=
k2
x
(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2-k1的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通一模)如图1,抛物线y=nx2-11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)填空:点B的坐标为(
(3,0)
(3,0)
),点C的坐标为(
(8,0)
(8,0)
);
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•兰州一模)如图,已知:一次函数:y=-x+4的图象与反比例函数:y=
3x
(x>0)的图象分别交于A、B两点.点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求出S1的最大值及相应的x的值;
(2)填空:
①当S1=S2时,x=
1或3
1或3

②当S1>S2时,x的取值范围是
1<x<3
1<x<3

③当S1<S2时的取值范围是
0<x<1或3<x<4
0<x<1或3<x<4

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《三角形》(01)(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(01)(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(02)(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中数学 来源:2010年四川省攀枝花市中考数学试卷(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(闻堰镇中 杜国娟)(解析版) 题型:选择题

(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>


同步练习册答案