精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为(  )
A.y=x2-4x-5B.y=-x2+4x-5C.y=x2+4x-5D.y=-x2-4x-5
相关习题

科目:初中数学 来源: 题型:

已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)

(1)请在横线上直接写出抛物线C2的解析式:
 

(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存精英家教网在,请求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过点A(1,
32
),其顶点E的横坐标为2,此抛物线与x轴分别交于B(x1,0),C(x2,0)两点,且x2-x1=4.
(1)求此抛物线的解析式及顶点坐标;
(2)连接EB、EC,判断△BEC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c过点A(1,
32
),其顶点E的横坐标为2,此抛物线与x轴分别交于B(x1,0),C(x2,0)两点(x1<x2),且x12+x22=16.
(1)求此抛物线的解析式及顶点E的坐标;
(2)若D是y轴上一点,且△CDE为等腰三角形,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知抛物线m:y=ax2+bx+c (a≠0) 与x轴交于A、B两点(点A在左),与y轴交于点C,顶点为M,抛物线上部分点的横坐标与对应的纵坐标如下表:
x -2 0 2 3
y 5 -3 -3 0
(1)根据表中的各对对应值,请写出三条与上述抛物线m有关(不能直接出现表中各对对应值)的不同类型的正确结论;
(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;
(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为
2
,又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c与x轴交于A、B两点,若A、B两点的横坐标分别是一元二次方程x2-2x-3=0的两个实数根,与y轴交于点C(0,3),
(1)求抛物线的解析式;
(2)在此抛物线上求点P,使S△ABP=8.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线m:y=ax2+bx+c(a≠0)与x轴交于A、B两点(A点在左边),与y轴交于点C,顶点为M,抛物线上部分点的横坐标与对应的纵坐标如下表:
x -2 0 2 3
y 5 -3 -3 0
(1)根据表中的各对对应值,请写出三条与上述抛物线m有关(不能直接出现表中各对对应值)的不同类型的正确的结论?
(2)若将抛物线m绕原点O顺时针旋转180°,写出旋转后的抛物线n的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴相交于不同的两点A(x1,0),B(x2,0)(x1<x2),精英家教网与y轴的负半轴交于点C.若抛物线顶点的横坐标为-1,A、B两点间的距离为10,且△ABC的面积为15.
(1)求此抛物线的解析式;
(2)求出点A和点B的坐标;
(3)在x轴上方,(1)中的抛物线上是否存在点C',使得以A、B、C'为顶点的三角形与△ABC相似?若存在,求出点C'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)a、b的值;
(2)设抛物线与y轴的交点为Q如图1,直线y=-2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线数学公式扫过的区域的面积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案