精英家教网 > 初中数学 > 题目详情
如果二次函数y=-x2-2x+c的图象在x轴的下方,则c的取值范围为(  )
A.c<-1B.c≤-1C.c<0D.c<1
相关习题

科目:初中数学 来源: 题型:

如果二次函数y=-x2-2x+c的图象在x轴的下方,则c的取值范围为(  )
A、c<-1B、c≤-1C、c<0D、c<1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果二次函数y=-x2-2x+c的图象在x轴的下方,则c的取值范围为(  )
A.c<-1B.c≤-1C.c<0D.c<1

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如果二次函数y=-x2-2x+c的图象在x轴的下方,则c的取值范围为


  1. A.
    c<-1
  2. B.
    c≤-1
  3. C.
    c<0
  4. D.
    c<1

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

如果二次函数y=-x2-2x+c的图象顶点在x轴的下方,则c的取值范围为( )

Ac<-1                              Bc£-1

Cc<0                                Dc<1

 

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

如果二次函数y=-x2-2x+c的图象顶点在x轴的下方,则c的取值范围为( )

Ac<-1   Bc£-1           Cc<0   Dc<1

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)在如图所示的直角坐标系中画出C1的大致图象.
(3)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(4)若P(n,y1),Q(1,y2)是C1上的两点,且y1>y2,求实数n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)在如图所示的直角坐标系中画出C1的大致图象.
(3)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(4)若P(n,y1),Q(1,y2)是C1上的两点,且y1>y2,求实数n的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省镇江市中考数学试卷(解析版) 题型:解答题

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是______;
(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是______.
【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道在平面直角坐标系中,二次函数y=-(x-1)2+2的图象可以由二次函数y=-x2的图象先向上平移2个单位,再向右平移1个单位得到.由此我们是否可以联想其它类型的函数也可以进行类似的平移呢?小明和小华两位同学对于这个问题进行了如下思考:
(1)现把一次函数y=-x的图象向上平移1个单位后得到一个新的函数的图象的解析式为______;若再向右平移3个单位后的图象的解析式为______.
(2)如果把反比例函数y=
3
x
的图象向上平移2个单位得反比例函数______的图象,若再向右平移2个单位后可以得到反比例函数______的图象;
(3)函数y=
2x+1
x+1
的图象可以由函数y=-
1
x
图象如何平移得到的;
(4)已知反比例函数y=
3
x
的图象将此函数向右平移2个单位后,再进行上下平移,使新函数的图象与坐标轴的两个交点与原点构成一个等腰三角形,求新函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是
(1,-2)
(1,-2)

(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>


同步练习册答案