精英家教网 > 初中数学 > 题目详情
过A(4,-2)和B(-2,-2)两点的直线一定(  )
A.垂直于x轴B.与Y轴相交但不平于x轴
C.平行于x轴D.与x轴、y轴平行
相关习题

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图(1)两个圆中,⊙O1与⊙O2相交于A、B,过B点的直线交两圆于C、D,已知⊙O1与⊙O2的半径分别为6和8,求证:AD:AC的比值为定值;
(2)如图(2),D为线段AB延长线上的一点,△ABC与△BDE都是等边三角形,连接CE并延长,△ABC的外接圆⊙O交CF于M,请解答下列问题:
①求证:BE切⊙O于B;
②若CM=2,MF=6,求⊙O的半径;
③过D作DG∥BE交EF于G,过G作GH∥DE交DF于H,设△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(8分)(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2∶00~2∶15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:

①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;

②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;

③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.

 

    

 

请你按照小明的思路解决这个问题.

(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内

的两条线段,在7∶30~8∶00之间,时针与分针互相垂直的时刻是多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(8分)(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2∶00~2∶15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:
①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;
②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;
③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.
    
请你按照小明的思路解决这个问题.
(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内
的两条线段,在7∶30~8∶00之间,时针与分针互相垂直的时刻是多少?

查看答案和解析>>

科目:初中数学 来源:2011~2012年安徽芜湖许镇镇中心初中八年级第二次月考数学试卷(带解析) 题型:解答题

(1)证明:不论取什么值,直线:y=x-都通过一个定点;
(2)以A(0,2)、B(2,0)、O(0,0)为顶点的三角形被直线分成两部分,分别求出当=2和=-时,靠近原点O一侧的那部分面积.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省无锡市江南中学中考数学二模试卷(解析版) 题型:解答题

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)

(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,)、R(b,),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市育才中学中考数学二模试卷(解析版) 题型:解答题

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)

(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,)、R(b,),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(福建漳州卷)数学(解析版) 题型:解答题

(1)问题探究

数学课上,李老师给出以下命题,要求加以证明.

如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.

同学们经过思考、讨论、交流,得到以下证明思路:

思路一 直接利用等腰三角形性质和三角形内角和定理…

思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…

思路三 以BC为直径作圆,利用圆的知识…

思路四…

请选择一种方法写出完整的证明过程;

(2)结论应用

李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:

①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙O的切线;

②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年安徽芜湖许镇镇中心初中八年级第二次月考数学试卷(解析版) 题型:解答题

(1)证明:不论取什么值,直线:y=x-都通过一个定点;

(2)以A(0,2)、B(2,0)、O(0,0)为顶点的三角形被直线分成两部分,分别求出当=2和=-时,靠近原点O一侧的那部分面积.

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年南京市考数学一模试卷 题型:解答题

(8分)(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2∶00~2∶15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:

①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;

②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;

③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.

 

    

 

请你按照小明的思路解决这个问题.

(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内

的两条线段,在7∶30~8∶00之间,时针与分针互相垂直的时刻是多少?

 

查看答案和解析>>


同步练习册答案