精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是(  )
A.f(-1)B.f(1)C.f(2)D.f(5)
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在x=1处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最大值时,写出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下,g(x)满足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是


  1. A.
    f(-1)
  2. B.
    f(1)
  3. C.
    f(2)
  4. D.
    f(5)

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京101中学高三(上)9月统考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(文科)(解析版) 题型:解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源:2008年重庆市高考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是(  )
A.f(-1)B.f(1)C.f(2)D.f(5)

查看答案和解析>>


同步练习册答案