精英家教网 > 高中数学 > 题目详情
如果a>b>0,t>0,设M=
a
b
N=
a+t
b+t
,那么(  )
A.M>N
B.M<N
C.M=N
D.M与N的大小关系随t的变化而变化
相关习题

科目:高中数学 来源: 题型:

如果a>b>0,t>0,设M=
a
b
N=
a+t
b+t
,那么(  )
A、M>N
B、M<N
C、M=N
D、M与N的大小关系随t的变化而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果a>b>0,t>0,设M=
a
b
N=
a+t
b+t
,那么(  )
A.M>N
B.M<N
C.M=N
D.M与N的大小关系随t的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为
1
2
,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线x+
3
y+3=0
相切.
(1)求椭圆的方程;
(2)设O为椭圆的中心,过F点作直线交椭圆于M、N两点,在椭圆上是否存在点T,使得
OM
+
ON
+
OT
=
0
,如果存在,则求点T的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:数学公式(a>b>0)的一个顶点坐标为A(数学公式),且其右焦点到直线数学公式的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(数学公式),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

科目:高中数学 来源:2009年上海市崇明县高考数学二模试卷(文科)(解析版) 题型:解答题

设椭圆C:(a>b>0)的一个顶点坐标为A(),且其右焦点到直线的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设函数f(x)=1+9x6tlnx,在x=a,x=b处分别取得极大值和极小值,连接函数图像上A(a,f(a)),B(b,f(b))两点.

(1)求实数t的取值范围;

(2)是否存在实数t,使得线段AB(包括两端点)与直线x=1相交?若存在,求出t的取值范围;若不存在,请说明理由.

(文)已知函数f(x)=mx3-x的图像上,以N(1,n)为切点的切线的倾斜角为

(1)求m,n的值;

(2)是否存在最小的正整数k,使得不等式f(x)≤k-1991对于x∈[-1,3]恒成?如果存在,请求出最小的正整数k;如果不存在,请说明理由。

(3)求证:|f(sinx)+f(cosx)|≤2f(t+)(x∈R,t>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县二模)设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点坐标为A(0,-
2
),且其右焦点到直线y-x-2
2
=0
的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(
1
2
,0
),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>


同步练习册答案