精英家教网 > 高中数学 > 题目详情
关于x的不等式|x-3|+|x-2|<a无实数解,则a的取值范围是(  )
A.a≥1B.a>1C.a≤1D.a<1
相关习题

科目:高中数学 来源: 题型:

关于x的不等式|x-3|+|x-2|<a无实数解,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于x的不等式|x-3|+|x-2|<a无实数解,则a的取值范围是(  )
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广西柳州市铁路一中学高一(上)段考数学试卷(文科)(解析版) 题型:选择题

关于x的不等式|x-3|+|x-2|<a无实数解,则a的取值范围是( )
A.a≥1
B.a>1
C.a≤1
D.a<1

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省部分重点中学联考高二(上)期中数学试卷(理科)(解析版) 题型:选择题

关于x的不等式|x-3|+|x-2|<a无实数解,则a的取值范围是( )
A.a≥1
B.a>1
C.a≤1
D.a<1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省巴中市通江中学高三(下)4月月考数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源: 题型:

16、给出下列命题:
①关于x的的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是
②③④

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省宜昌一中高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈(-∞,-2)∪(0,+∞)时,f(x)>0,当x∈(-2,0)时,f(x)<0,且对任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函数f(x)的解析式;
(II)设函数F(x)=tf(x)-x-3,其中t≥0,求F(x)在时的最大值H(t);
(III)在(II)的条件下,若关于的函数y=log2[p-H(t)]的图象与直线y=0无公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省成都市高三摸底数学试卷(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈(-∞,-2)∪(0,+∞)时,f(x)>0,当x∈(-2,0)时,f(x)<0,且对任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函数f(x)的解析式;
(II)设函数F(x)=tf(x)-x-3,其中t≥0,求F(x)在时的最大值H(t);
(III)在(II)的条件下,若关于的函数y=log2[p-H(t)]的图象与直线y=0无公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈(-∞,-2)∪(0,+∞)时,f(x)>0,当x∈(-2,0)时,f(x)<0,且对任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函数f(x)的解析式;
(II)设函数F(x)=tf(x)-x-3,其中t≥0,求F(x)在数学公式时的最大值H(t);
(III)在(II)的条件下,若关于的函数y=log2[p-H(t)]的图象与直线y=0无公共点,求实数的取值范围.

查看答案和解析>>


同步练习册答案