精英家教网 > 高中数学 > 题目详情
已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是(  )
A.x+y+1=0B.x-y+1=0C.x+y-1=0D.x-y-1=0
相关习题

科目:高中数学 来源: 题型:

已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是(  )
A.x+y+1=0B.x-y+1=0C.x+y-1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源:《第3章 直线与方程》、《第4章 圆与方程》2011年单元测试卷(解析版) 题型:选择题

已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是( )
A.x+y+1=0
B.x-y+1=0
C.x+y-1=0
D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是


  1. A.
    x+y+1=0
  2. B.
    x-y+1=0
  3. C.
    x+y-1=0
  4. D.
    x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直线l:y=2x与抛物线C:y=
14
x2交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xA,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线x2=2py的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省安阳市汤阴一中高二(上)月考数学试卷(理科)(解析版) 题型:解答题

已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河北省唐山一中(上)期中数学试卷(解析版) 题型:解答题

已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=2x与抛物线C:y=
1
4
x2
交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xB,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线y=
1
4
x2
的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>


同步练习册答案