精英家教网 > 高中数学 > 题目详情
定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)D.f(cosA)<f(cosB)
相关习题

科目:高中数学 来源:韶关模拟 题型:单选题

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)D.f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省仙桃一中高三(上)第二次段考数学试卷(文科)(解析版) 题型:选择题

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则( )
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源:2012年广东省广州市金山中学高三测试数学试卷(理科)(解析版) 题型:选择题

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则( )
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省韶关市高三摸底数学试卷(理科)(解析版) 题型:选择题

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则( )
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则


  1. A.
    f(sinA)>f(cosB)
  2. B.
    f(sinA)<f(cosB)
  3. C.
    f(sinA)>f(sinB)
  4. D.
    f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图像的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个内角,则(    )

A、f (sinA) f (cosB)                                          B、f (sinA) f (cosB)              

       C、f (sinA) f (sinB)                                           D、f (cosA) f (cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)定义域在R上的周期函数f (x),周期T=2,直线x=2是它的图象的一条对称轴,且f (x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

7、函数f(x)是定义域为R的偶函数,又是以2为周期的周期函数、若f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当∈[0,π]时,0<f(x)<1;x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)<0,则方程f(x)=cosx在[-2π,2π]上的根的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①若函数f(x)是f(x)=x2(x∈R),则f(x)一定是单函数;
②若f(x)为单函数,x1、x2∈A且x1≠x2,则f(x1)≠f(x2);
③若定义在R上的函数f(x)在某区间上具有单调性,则f(x)一定是单函数;
④若函数f(x)是周期函数,则f(x)一定不是单函数;
⑤若函数f(x)是奇函数,则f(x)一定是单函数.
其中的真命题的序号是
②④
②④

查看答案和解析>>


同步练习册答案