精英家教网 > 高中数学 > 题目详情
函数f(x)=loga(x2-ax+2)在区间(1,+∞)上恒为正值,则实数a的取值范围为(  )
A.(1,2)B.(1,2]C.(0,1)∪(1,2)D.(1,
5
2
)
相关习题

科目:高中数学 来源: 题型:

函数f(x)=loga(x2-ax+2)在区间(1,+∞)上恒为正值,则实数a的取值范围为(  )
A、(1,2)
B、(1,2]
C、(0,1)∪(1,2)
D、(1,
5
2
)

查看答案和解析>>

科目:高中数学 来源:武汉模拟 题型:单选题

函数f(x)=loga(x2-ax+2)在区间(1,+∞)上恒为正值,则实数a的取值范围为(  )
A.(1,2)B.(1,2]C.(0,1)∪(1,2)D.(1,
5
2
)

查看答案和解析>>

科目:高中数学 来源:2011年上海市嘉定区高考数学三模试卷(文科)(解析版) 题型:解答题

已知a>1,函数f(x)的图象与函数y=ax-1的图象关于直线y=x对称,g(x)=loga(x2-2x+2).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](n>m>-1)上的值域为,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>1,函数f(x)的图象与函数y=ax-1的图象关于直线y=x对称,g(x)=loga(x2-2x+2).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](n>m>-1)上的值域为数学公式,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市闵行区高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源:闵行区一模 题型:解答题

已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为[loga
p
m
loga
p
n
]
,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知a>1,函数f(x)的图象与函数y=ax-1的图象关于直线y=x对称,g(x)=loga(x2-2x+2).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](n>m>-1)上的值域为[loga
p
m
 , loga
p
n
]
,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为[loga
p
m
loga
p
n
]
,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>


同步练习册答案