精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程x2-(R+r)x+
1
4
d2=0无实数根,其中R,r分别是⊙O1,⊙O2的半径,d为此两圆的圆心距,则⊙O1,⊙O2的位置关系为(  )
A.外离B.相切C.相交D.内含
相关习题

科目:初中数学 来源:2013-2014学年广东广州协助学校40、铁二、37、八一中学初三上期中数学卷(解析版) 题型:解答题

已知:关于的一元二次方程

(1)求实数k的取值范围;

(2)设上述方程的两个实数根分别为x1、x2,求:当取哪些整数时,x1、x2均为整数;

(3)设上述方程的两个实数根分别为x1、x2,若,求k的值.

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:关于的一元二次方程
(1)求实数k的取值范围;
(2)设上述方程的两个实数根分别为x1、x2,求:当取哪些整数时,x1、x2均为整数;
(3)设上述方程的两个实数根分别为x1、x2,若,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于的一元二次方程

(1)求实数k的取值范围;

(2)设上述方程的两个实数根分别为x1x2,求:当取哪些整数时,x1x2均为整数;

(3)设上述方程的两个实数根分别为x1x2,若,求k的值.

查看答案和解析>>

科目:初中数学 来源:江西省期末题 题型:解答题

已知关于的一元二次方程x2+kx-3=0,
(1) 求证:不论k为何实数,方程总有两个不相等的实数根;
 (2)当k=2时,用配方法解此一元二次方程。

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的函数关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q+1与x轴交于A、B两点(A、B不重合),且以AB为直径的圆正好经过该抛物线的顶点,求p,q的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2。
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式。

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(51):2.8 二次函数与一元二次方程(解析版) 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(20):2.3 二次函数的应用(解析版) 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>


同步练习册答案