精英家教网 > 高中数学 > 题目详情
已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是(  )
A.2B.3C.4D.5
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(  )
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(  )
A.
2
B.
3
C.
6
2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1的左、右焦点,若F2关于渐近线的对称点为M,且有|MF1|=c,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.(1,
3
C.(1,1+
2
D.(1+
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>b>0)的两个焦点,A和B是以O(O为坐标原点)为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为(  )
A、
3
B、
5
C、
5
2
D、
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是直角三角形,则该双曲线离心率的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1和F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P是双曲线左支的一点,PF1⊥PF2,PF1=c,则该双曲线的离心率为(  )

查看答案和解析>>


同步练习册答案