精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-k
x
在(0,+∞)上单调递增,则实数k的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
-k
x
在(0,+∞)上单调递增,则实数k的取值范围是(  )
A、(-∞,0)
B、(0,+∞)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
-k
x
在(0,+∞)上单调递增,则实数k的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx,g(x)=
lnx
x

(Ⅰ)求函数g(x)=
lnx
x
的单调区间;
(Ⅱ)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=kx,g(x)=
lnx
x

(Ⅰ)求函数g(x)=
lnx
x
的单调区间;
(Ⅱ)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2|x+m-1|x-4
,m>0
,满足f(2)=-2,
(1)求实数m的值;
(2)判断y=f(x)在区间(-∞,m-1]上的单调性,并用单调性定义证明;
(3)若关于x的方程f(x)=kx有三个不同实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)探究函数f(x)=ax+(a、b是正常数)在区间上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)探究函数f(x)=ax+(a、b是正常数)在区间上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016届福建省高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)探究函数f(x)ax(ab是正常数)在区间的单调性(只需写出结论,不要求证明).并利用所得结论求使方程f(x)log4m0m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:嘉定区一模 题型:解答题

已知函数f(x)=
|x+m-1|
x-2
,m>0且f(1)=-1.
(1)求实数m的值;
(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:
①有且仅有一个实数解;
②有两个不同的实数解;
③有三个不同的实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
cosωxcos(
π
2
-ωx)(ω>0),且函数y=f(x)的图象相邻两条对称轴之间的距为
π
2

(1)求f(
π
6
)的值.
(2)若函数 f(kx+
π
12
)(k>0)在区间[-
π
6
π
3
]上单调递增,求k的取值范围.

查看答案和解析>>


同步练习册答案