精英家教网 > 高中数学 > 题目详情
(理科做)函数y=f(x)的图象关于直线y=x对称,向左平移一个长度单位后仍关于直线y=x对称,若f(1)=0,则f(2011)=(  )
A.-2010B.2010C.-2011D.2011
相关习题

科目:高中数学 来源: 题型:

(理科做)函数y=f(x)的图象关于直线y=x对称,向左平移一个长度单位后仍关于直线y=x对称,若f(1)=0,则f(2011)=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科做)函数y=f(x)的图象关于直线y=x对称,向左平移一个长度单位后仍关于直线y=x对称,若f(1)=0,则f(2011)=(  )
A.-2010B.2010C.-2011D.2011

查看答案和解析>>

科目:高中数学 来源:2011-2012学年青海省湟川中学高三(上)第二次月考数学试卷(解析版) 题型:选择题

(理科做)函数y=f(x)的图象关于直线y=x对称,向左平移一个长度单位后仍关于直线y=x对称,若f(1)=0,则f(2011)=( )
A.-2010
B.2010
C.-2011
D.2011

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(理科做)函数y=f(x)的图象关于直线y=x对称,向左平移一个长度单位后仍关于直线y=x对称,若f(1)=0,则f(2011)=


  1. A.
    -2010
  2. B.
    2010
  3. C.
    -2011
  4. D.
    2011

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:证明题

已知点P(t,y)在函数f(x)=(x≠-1)的图象上,且有t2-c2at+4c2=0(c≠0),
(1)求证:|ac|≥4;
(2)求证:在(-1,+∞)上f(x)单调递增;
(3)(仅理科做)求证:f(|a|)+f(|c|)>1。

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(1)求实数a的值;
(2)当-1<m<0时,判断方程f(x)=2g(x)+m的解的个数,并说明理由;
(3)设函数y=f(bx)(其中0<b<1)的图象C1与函数y=g(x)的图象C2交于P、Q,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N.证明:曲线C1在点M处的切线与曲线C2在点N处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科做)已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(1)求实数a的值;
(2)当-1<m<0时,判断方程f(x)=2g(x)+m的解的个数,并说明理由;
(3)设函数y=f(bx)(其中0<b<1)的图象C1与函数y=g(x)的图象C2交于P、Q,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N.证明:曲线C1在点M处的切线与曲线C2在点N处的切线不平行.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高考数学模拟试卷(文理合卷)(解析版) 题型:解答题

(理科做)已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(1)求实数a的值;
(2)当-1<m<0时,判断方程f(x)=2g(x)+m的解的个数,并说明理由;
(3)设函数y=f(bx)(其中0<b<1)的图象C1与函数y=g(x)的图象C2交于P、Q,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N.证明:曲线C1在点M处的切线与曲线C2在点N处的切线不平行.

查看答案和解析>>


同步练习册答案