精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c与x轴的两个交点为(-1,0),(3,0),其形状与抛物线y=-2x2相同,则y=ax2+bx+c的函数关系式为(  )
A.y=-2x2-x+3B.y=-2x2+4x+5
C.y=-2x2+4x+8D.y=-2x2+4x+6
相关习题

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、抛物线y=ax2+bx+c的部分图象如图所示,请写出与其解析关系式图象及性质有关的两个正确结论:
抛物线与x轴负半轴交点坐标为(-3,0).-3<x<1时y<0,答案不唯一
,(对称轴方程,图象与x正半轴、y轴交点坐标例外)

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c过点A(-1,0)点B(3,0),其开口向上,点C是抛物线与y轴的交点,且OC=3OA.
(1)求抛物线的解析式;
(2)如图①,将抛物线x轴下方的部分沿x轴对折交y轴于点C,若直线y=-x+b与翻折后的曲线的交点数为两个,求b的取值范围;
(3)如图②,过点B作BD⊥x轴,交AC的延长线于点D,设点C的上方有一点P(0,t),且△PAD的面积为15,若将抛物线沿其对称轴上下平移,使抛物线与△PAD总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为7
2
?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为数学公式?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+c过点A(-1,0)点B(3,0),其开口向上,点C是抛物线与y轴的交点,且OC=3OA.
(1)求抛物线的解析式;
(2)如图①,将抛物线x轴下方的部分沿x轴对折交y轴于点C,若直线y=-x+b与翻折后的曲线的交点数为两个,求b的取值范围;
(3)如图②,过点B作BD⊥x轴,交AC的延长线于点D,设点C的上方有一点P(0,t),且△PAD的面积为15,若将抛物线沿其对称轴上下平移,使抛物线与△PAD总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源:天津期末题 题型:解答题

抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(﹣1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b,若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根。
(1)判断△ABM的形状,并说明理由;
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标。

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>


同步练习册答案