精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有(  )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根
相关习题

科目:高中数学 来源: 题型:

4、设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有(  )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省荆州中学高三(上)9月月考数学试卷(文科)(解析版) 题型:选择题

设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有( )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省荆州中学高三(上)9月月考数学试卷(理科)(解析版) 题型:选择题

设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有( )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省荆州市松滋二中高三(上)9月月考数学试卷(文科)(解析版) 题型:选择题

设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有( )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省荆州市松滋二中高三(上)9月月考数学试卷(理科)(解析版) 题型:选择题

设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有( )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-2ln(1+x).
(1)求f(x)的单调区间;
(2)求函数f(x)在[m,m+1](m>-1)上的最小值;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-2ln(1+x).
(1)若在定义域内存在x0,而使得不等式f(x0)-m≤0能成立,求实数m的最小值;
(2)若函数g(x)=f(x)-x2-x-a在区间(0,2]上恰有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当0<a<2时,求函数g(x)=f(x)-x2-ax-1在区间[0,3]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-ln(1+x)2,若关于x的方程f(x)=x2+x+a在x∈[0,2]上恰好有两个相异实根,则实a的取值范围为
 

查看答案和解析>>


同步练习册答案