精英家教网 > 高中数学 > 题目详情
函数y=x2-3|x-1|-1的图象与x轴不同的交点的个数共有(  )
A.4个B.3个C.2个D.1个
相关习题

科目:高中数学 来源: 题型:

13、函数y=x2-3|x-1|-1的图象与x轴不同的交点的个数共有(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x2-3|x-1|-1的图象与x轴不同的交点的个数共有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数y=x2-3|x-1|-1的图象与x轴不同的交点的个数共有


  1. A.
    4个
  2. B.
    3个
  3. C.
    2个
  4. D.
    1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax2+bx+c(a≠0)图象上有两点A1(m1,y1),A2(m2,y2),满足a2+(y1+y2)a+y1•y2=0.
求证:
(1)存在i∈{1,2},使yi=-a;
(2)抛物线y=ax2+bx+c与x轴总有两个不同的交点;
(3)若使该图象与x轴交点为(x1,0)(x2,0),(x1<x2),则存在i∈{1,2},使x1<mi<x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=ax2+bx+c(a≠0)图象上有两点A1(m1,y1),A2(m2,y2),满足a2+(y1+y2)a+y1•y2=0.
求证:
(1)存在i∈{1,2},使yi=-a;
(2)抛物线y=ax2+bx+c与x轴总有两个不同的交点;
(3)若使该图象与x轴交点为(x1,0)(x2,0),(x1<x2),则存在i∈{1,2},使x1<mi<x2

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A必修5) 2009-2010学年 第8期 总第164期 人教课标版(A必修5) 题型:044

(1)求函数y=x2-4x+3的零点.

(2)已知二次函数y=x2+bx+c的图象与x轴相交于(1,0)与(3,0)两点,求不等式x2+bx+c>0的解集.

(3)若不等式x2+bx+c>0的解集为{x|x>3,或x<1},求实数b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+1,(a∈R)
(1)若在f(x)的图象上横坐标为
23
的点处存在垂直于y轴的切线,求a的值;
(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象与函数f(x)的图象恰有三个交点,若存在,试出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x(ex-1)-x2(x∈R).
(1)求证:函数f(x)有且只有两个零点;
(2)已知函数y=g(x)的图象与函数h(x)=-
1
2
f(-x)-
1
2
x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);
(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正实数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(1)求a的值;
(2)对于函数F(x)及其定义域D,若存在x0∈D,使F(x0)=x0成立,则称x0为F(x)的不动点.若f(x)+g(x)+b在其定义域内存在不动点,求实数b的取值范围;
(3)若n为正整数,证明:10f(n)•(
4
5
)g(n)<4

(参考数据:lg3=0.3010,(
4
5
)9=0.1342
(
4
5
)16=0.0281
(
4
5
)25=0.0038

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[
12
,2]
上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在区让(0,3)上不单调,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又y=h′(x)是y=h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.证明h′(αx1+βx2)<0.

查看答案和解析>>


同步练习册答案